翻訳と辞書 |
List of isotoxal polyhedra and tilings : ウィキペディア英語版 | List of isotoxal polyhedra and tilings In geometry, isotoxal polyhedra and tilings are edge-transitive. An isotoxal polyhedron or tiling must be either isogonal (vertex-transitive) or isohedral (face-transitive) or both. Regular polyhedra are isohedral (face-transitive), isogonal (vertex-transitive) and isotoxal. Quasiregular polyhedra are isogonal and isotoxal, but not isohedral; their duals are isohedral and isotoxal, but not isogonal. == Convex isotoxal polyhedra ==
There are nine convex isotoxal polyhedra formed from the Platonic solids. The vertex figures of the quasiregular forms are rectangles, and the vertex figure of the duals of the quasiregular are rhombi. 3 | 2 3 |75px Tetratetrahedron (Octahedron) 2 | 3 3 |75px Cube (Rhombic hexahedron) |- valign=top |p=4 q=3 |75px Cube 3 | 2 4 |75px Octahedron 4 | 2 3 |75px Cuboctahedron 2 | 3 4 |75px Rhombic dodecahedron |- valign=top |p=5 q=3 |75px Dodecahedron 3 | 2 5 |75px Icosahedron 5 | 2 3 |75px Icosidodecahedron 2 | 3 5 |75px Rhombic triacontahedron |}
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「List of isotoxal polyhedra and tilings」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|